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Abstract

This paper deals with certain properties of the continuous wavelet transform and wavelet functions. The
norms and the spreads in time and frequency of the common Gabor and Morlet wavelet functions are
presented. It is shown that the norm of the Morlet wavelet function does not satisfy the normalization
condition and that the normalized Morlet wavelet function is identical to the Gabor wavelet function with
the parameter s ¼ 1:
The general harmonic wavelet function is developed using frequency modulation of the Hanning and

Hamming window functions. Several properties of the general harmonic wavelet function are also
presented and compared to the Gabor wavelet function. The time and frequency spreads of the general
harmonic wavelet function are only slightly higher than the time and frequency spreads of the Gabor
wavelet function. However, the general harmonic wavelet function is simpler to use than the Gabor wavelet
function. In addition, the general harmonic wavelet function can be constructed in such a way that the zero
average condition is truly satisfied. The average value of the Gabor wavelet function can approach a value
of zero but it cannot reach it.
When calculating the continuous wavelet transform, errors occur at the start- and the end-time indexes.

This is called the edge effect and is caused by the fact that the wavelet transform is calculated from a signal
of finite length. In this paper, we propose a method that uses signal mirroring to reduce the errors caused by
the edge effect. The success of the proposed method is demonstrated by using a simulated signal.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In recent years, the wavelet transform [1] has emerged as a powerful new method for
monitoring the spectral content of both non-stationary and stationary processes. This transform
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correlates the observed process, f ðtÞ; with a family of functions that can be simultaneously
translated in time and scaled in the frequency domain. These functions are called wavelets. One
major advantage of this method is that one can vary the time–frequency resolution, which allows
us to dynamically adapt to the desired time or frequency resolution. In earlier studies, these
properties were used to monitor the frequency content of a washing machine during startup [2]
and for detecting faults of DC electromotors [3].
This paper deals with certain properties of the wavelet functions that are used for

the continuous wavelet transform (CWT). The time and frequency spreads of the
wavelet function have to be considered when it is selected, and several parameters of the wave-
let functions can affect the conditions (e.g., the zero average value or the norm) that
wavelet functions must meet. Additional conditions arise when the CWT is calculated
from discrete signals. If one uses approximately analytical wavelet functions, the frequency
modulation parameter depends directly on the sampling frequency. These relations are discussed
in this paper.
When calculating the CWT, errors occur at the start- and the end-time indexes. This is called

the edge effect or the cone of influence [4], and it is caused by the fact that the wavelet transform is
calculated from a signal of finite length.
The first part of this paper gives a short introduction to the CWT. The second part deals with

the properties of the Gabor, Morlet and general harmonic wavelet functions. The last part of the
paper discusses the edge effect.

2. The continuous wavelet transform

The CWT Wf ðu; sÞ of a function fAL2ðRÞ at time u and scale s is defined as [5]:

Wf ðu; sÞ ¼
Z þN

�N

f ðtÞcn

u;sðtÞ dt; ð1Þ

where * represents a complex conjugation and cu;sðtÞ is created by the translation of a wavelet
function cðtÞ by u and a scaling by s; Eq. (2). These two coefficients are called the translation
parameter and the scaling factor, respectively. The wavelet function cðtÞ is a function with zero
average value, Eq. (3), and is normalized [5], Eq. (4).

cu;sðtÞ ¼
1ffiffi

s
p c

t � u

s

� �
; ð2Þ

Z þN

�N

cðtÞ dt ¼ 0; ð3Þ

jjcðtÞjj2 ¼
Z þN

�N

jcðtÞj2 dt ¼ 1: ð4Þ
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The CWT of a function fAL2ðRÞ localizes the signal with a time–frequency window H [6]
defined with a Cartesian product, Eq. (5), where %uu;s and %ou;s stand for the time and frequency
centres of the wavelet function that is translated and scaled, Eqs. (6) and (7).

H ¼ ½ %uu;s7stu;s � 	 ½ %ou;s7sou;s �; ð5Þ

%uu;s ¼
1

jjcu;sðtÞjj
2

Z þN

�N

t jcu;sðtÞj
2 dt ¼ s %u þ u ðsee Eq: ðA:2ÞÞ; ð6Þ

%ou;s ¼
1

2 
 p 
 jjcu;sðtÞjj
2


Z þN

�N

o 
 j #cu;sðoÞj2 
 do ¼
1

s

 %o ðsee Eq: ðA:4ÞÞ: ð7Þ

In Eqs. (6) and (7) %u and %o represent the time and frequency centres of a wavelet function cðtÞ; see
also Eqs. (A.1) and (A.3). #cu;sðoÞ stands for the integral Fourier transform of the translated and
scaled wavelet function cu;sðtÞ: The variances of the translated and scaled wavelet function in the
time and frequency domains are given by s2tu;s

and s2ou;s
as shown:

s2tu;s
¼

1

jjcu;sðtÞjj
2

Z þN

�N

ðt � %uu;sÞ
2jcu;sðtÞj

2 dt

¼ 1
Z þN

�N

ðt � s %u � uÞ2 c
t � u

s

� ���� ���21
s|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

new variable
t�u

s
¼z

dt

¼
Z þN

�N

ðzs þ u � s %u � uÞ2jcðzÞj2
1

s
s dz

¼ s2
Z þN

�N

ðz � %uÞ2jcðzÞj2 dz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s2t

¼ s2s2t ; ð8Þ

s2ou;s
¼

1

2pjjcu;sðtÞjj
2

Z þN

�N

ðo� %ou;sÞ
2j #cu;sðoÞj2 do

¼
1

2p1

Z þN

�N

o�
1

s
%o

� 2
j

ffiffi
s

p
e�iuo #cðsoÞj2 do|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

new variable s
o¼z

¼
1

2p

Z þN

�N

z

s
�

%o
s

� 2
sj #cðzÞj2

dz

s

¼
1

s2
1

2p

Z þN

�N

ðz � %oÞ2j #cðzÞj2 dz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s2o

¼
1

s2
s2o: ð9Þ
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3. Wavelet functions

3.1. The Gabor wavelet function

The Gabor wavelet function is obtained by multiplying the Gaussian window by eiZt; as shown
below, where s defines the width of the wavelet function and i ¼

ffiffiffiffiffiffiffi
�1

p
:

cGaborðt; s; ZÞ ¼
1

ðs2pÞ1=4
e�t2=2s2

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Gaussian window

eiZt: ð10Þ

The coefficient Z depends on the sampling frequency and the selected minimum scale. The Gabor
wavelet function belongs to the family of analytical wavelets. The relationship between the scale
and the frequency can be obtained from the Fourier integral transform of the translated and
scaled Gabor wavelet function #cGaboru;sðoÞ [7], Eq. (11), or from the frequency centre of the Gabor
wavelet function [7], Eq. (12).

#cGaboru;sðoÞ ¼ ð4ps2Þ1=4e�ioue�ðo�Z=sÞ2s2s2=2; ð11Þ

%o ¼ Z - %ou;s ¼
Z
s
: ð12Þ

The relationship between the scale and the frequency is therefore:

o ¼
Z
s
; f ¼

Z
2ps

: ð13Þ

When using discrete signals the Nyquist criterion must be met:

fmaxp
1

2Dt
¼

fs

2
; ð14Þ

where Dt is a time increment and fs represents the sampling frequency. From Eq. (14) the
coefficient Z can be calculated as:

fmax ¼
Z

2psmin

p
1

2Dt
) Z ¼

sminp
Dt

: ð15Þ

One should select sminX2 to avoid undersampling of the wavelet function. In accordance with
Eq. (3) the Gabor wavelet function should have an average value of zero. The average value of the
Gabor wavelet function is given by expression (16) [7].

Average ¼
Z þN

�N

1

ðs2pÞ1=4
et2=ð2s2ÞeiZt dt ¼

ffiffiffiffiffiffiffiffiffiffi
4ps24

p
e�Z2s2=2: ð16Þ

The coefficient Z should be large enough so that the average value of the Gabor wavelet function
is approximately zero. From expression (16) it follows that if s ¼ 1:0 and ZX5; then Averagep7	
10�6: The parameter smin is chosen with the time and the frequency variances in mind, see Table 1.
If a low value for smin is chosen, the time variance at a certain scale s will decrease and the
frequency variance at the same scale s will increase. On the other hand, if a high value for smin is
chosen, the time variance at a certain scale s will increase and the frequency variance at the same

I. Simonovski, M. Bolte$zar / Journal of Sound and Vibration 264 (2003) 545–557548



scale s will decrease. The frequency variance of the Gabor wavelet function is proportional to the
frequency o; while the time variance of the Gabor wavelet function is proportional to 1=o:

3.2. The Morlet wavelet function

The Morlet wavelet function [8,9] is defined as

cMorletðt; ZÞ ¼ e
�t2=2eiZt: ð17Þ

The coefficient Z depends upon the sampling frequency and the selected minimum scale. It is
evident from Eq. (17) that the Morlet wavelet function is basically the Gabor wavelet function
with s ¼ 1 and without the 1=

ffiffiffi
p4

p
in the denominator of the Gabor wavelet function, Eq. (10).

Table 2 lists the basic properties of the Morlet wavelet function.

jjcMorletðt; ZÞjj
2 ¼

Z þN

�N

je�t2=2eiZtj2 dt ¼
Z þN

�N

e�t2 dt ¼
ffiffiffi
p

p
: ð18Þ

The Morlet wavelet function has to be normalized to comply with the normalization condition,
Eq. (4). If the Morlet wavelet function is divided by 1=

ffiffiffi
p4

p
; the normalized Morlet wavelet

Table 1

Properties of certain wavelet functions [7]

Property Gabor General harmonic

Average value %c
ffiffiffiffiffiffiffiffiffiffi
4ps24

p
e�Z2s2=2

sinðZÞ
2p2=

ffiffi
3

p
Zðp2�Z2Þ

Norm jjcðt; s; Zjj2 1 1

Time centre %u 0 0

Frequency centre %o Z Z

Time spread stu;s s s ffiffi
2

p
s

ffiffiffiffiffiffiffiffiffiffiffi
2p2�15
6p2

q
Frequency spread sou;s

1
s
1 ffiffi
2

p 1
s

1
s

p ffiffi
3

p
BT product s2tu;s


 s2ou;s

1
4

2p2�15
6p2

p2
3
¼ 0:2633

Scale–frequency relationship o ¼ Z
s

o ¼ Z
s

Table 2

Properties of the Morlet wavelet function

Property Value

Average value %c
e�ðZ2=2Þ

ffiffiffiffi
2p

p
Norm jjcðt; ZÞjj2

ffiffiffi
p

p
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function is obtained, Eq. (19). However, the normalized Morlet wavelet function is identical to the
Gabor wavelet function with the parameter s ¼ 1:

cMorletnormalized
¼
1ffiffiffi
p4

p e�t2=2eiZt: ð19Þ

3.3. The general harmonic wavelet function

In this part the general harmonic wavelet function is developed. The harmonic wavelet function
is well known in the literature. It was developed by Newland in [10–12] and lately used for the
analysis of the transient signals [13]. The Fourier integral transform of these wavelets is a constant
value in the certain frequency band while outside of this frequency band is equal to zero. A
different approach is used for developing the general harmonic wavelet. The Hamming and
Hanning window functions are a starting point. The Hamming and Hanning window functions
can be defined with Eq. (20), where A and B are constants. For the Hamming window A ¼ 0:54;
B ¼ 0:46 and for the Hanning window A ¼ B ¼ 0:5:

wHðt;A;BÞ ¼
½A þ B cosðptÞ�: jtjo1
0: elsewhere

( )
: ð20Þ

The general harmonic wavelet function is defined as

cGenHarmðt;A;B; ZÞ ¼ wHðt;A;BÞeiZt: ð21Þ

From the normalization condition, it follows that 2A2 þ B2 ¼ 1; as shown below:

jjcGenHarmðt;A;B; ZÞjj2

¼
Z þ1

�1
j½A þ B cosðptÞ�eiZtj2 dt

¼
Z þ1

�1
½A2 þ 2AB cosðptÞ þ B2 cos2ðptÞ� dt

¼ 2A2 þ B2-2A2 þ B2 ¼ 1: ð22Þ

Values for the parameters A and B are calculated from the expression of the variance [7], Eq. (23).
In Eq. (23) %oGenHarm represents the frequency centre of the wavelet function, Table 1, and
#cGenHarmðo;A;B; ZÞ represents the Fourier integral transform of the general harmonic wavelet
function [7], Eq. (24). From expression (23) it follows that A ¼ B and taking into account
expression (22) the solution is obtained as A ¼ B ¼ 1=

ffiffiffi
3

p
: If one was to construct the Hamming

or Hanning wavelet functions by frequency modulation of the corresponding window functions,
the resulting wavelet functions would have an infinite frequency spread as shown below.

s2oGenHarm
¼

1

2pjjcGenHarmðt;A;B; ZÞjj2

Z þN

�N

ðo� %oGenHarmÞ
2 j #cGenHarmðo;A;B; ZÞj2 do

¼ A2p2 � 2Ap2ðA � BÞ þ
2ðA � BÞ2

p
N-A ¼ B; ð23Þ
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#cGenHarmðo;A;B; ZÞ ¼

2A: o ¼ Z

B: o ¼ Z7p

sinðo� ZÞ
2Ap2 � 2ðo� ZÞ2ðA � BÞ

ðo� ZÞ½p2 � ðo� ZÞ2�
: oaZ4oaZ7p

8>>><
>>>:

9>>>=
>>>;: ð24Þ

As is the case with the Gabor wavelet function, the coefficient Z depends on the sampling
frequency and the selected minimum scale. The procedure for selecting the coefficient Z is the same
as the procedure for selecting the coefficient Z for the Gabor wavelet function. However, if the
parameter Z is a multiple of p; the average value of the general harmonic wavelet function is zero,
Table 1. This can be achieved if smin ¼ k Dt; k ¼ 2; 3;y . The general harmonic wavelet function
can, therefore, be constructed in such a way that the zero average condition is truly satisfied. On
the other hand, the average value of the Gabor wavelet function can be reduced by increasing the
parameter Z; but it cannot reach a value of zero. The properties of the general harmonic wavelet
function are given in Table 1 and are developed in Ref. [7].
When comparing the Gabor and the general harmonic wavelet functions the width and the

height of the wavelet functions should be similar to ensure comparable time and frequency
spreads. This can be achieved by equalizing the time or frequency spread. The equivalent sGenHarm

can be calculated using the equivalent-time-spread approach, Eq. (25), or the equivalent-
frequency-spread approach, Eq. (26).

s2tu;s
¼ s2Gabor

s2

2
¼ s2GenHarm

2p2 � 15
6p2

;

k

sGenHarm ¼ sGaborps

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2p2 � 15

r
: ð25Þ

Fig. 1. Gabor (top) and general harmonic (bottom) wavelet function. Parameters of the Gabor wavelet function: s ¼ 1;
Z ¼ 5; u ¼ 0; s ¼ 1: Parameters of the general harmonic wavelet function: A ¼ B ¼ 1=

ffiffiffi
3

p
; Z ¼ 5; u ¼ 0; s ¼ 2:565:
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Expressions for the time and frequency spreads are given in Table 1.

s2ou;s
¼

1

s2Gabor

1

2

1

s2
¼

1

s2GenHarm

p2

3
;

k

sGenHarm ¼ sGaborps

ffiffiffi
2

3

r
: ð26Þ

The Gabor and the general harmonic wavelet functions can, therefore, be compared if
the condition specified in expression (27) is satisfied. Fig. 1 shows the Gabor and
general harmonic wavelet functions. sGenHarm is calculated using the equivalent frequency spread,
Eq. (26).

sGaborps

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2p2 � 15

r
psGenHarmpsGaborps

ffiffiffi
2

3

r
: ð27Þ

4. The edge effect

The CWT is defined with Eq. (1) using the integral limits ð�N;þNÞ: Since the measured
signals are of finite length, the CWTs of these signals are affected. Errors occur at the start-
and end-time indexes of the calculated CWT. In both regions, a part of the wavelet function
is outside the region of the known, measured signal f; Fig. 2. When calculating the CWT at the
start- and end-time indexes (u ¼ 0 and u ¼ tend) the measured signal is multiplied by the highest
value of the wavelet function. This can cause ripples in the CWT at the start- and end-time
indexes, Fig. 5.
Because the width of the wavelet function depends on the scale s; the width of the edge effect

also depends on this scale. The edge effect width can be estimated using the time spread stu;s of the
wavelet function. Define the radius of trust R as a multiple k of the time spread of the wavelet

Fig. 2. Edge effect.
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function as shown below:

R ¼ kstu;s ¼ ksst ¼ k
Z
2pf|{z}

analytical wavelets

st ¼ k
smin

2fDt
st: ð28Þ

The area of the calculated CWT affected by the edge effect can be estimated using expression (29).
For the Gabor and the general harmonic wavelet functions with the equivalent time spread, the
radius of trust is given by expression (30). The parameter Z is calculated from Eq. (15). For the
general harmonic wavelet function and the equivalent-frequency-spread the radius of trust is given
by expression (31). Fig. 3 represents the area of the calculated CWT that is affected by the edge
effect. The CWT values at high frequencies are the least affected by the edge effect. However, with
a decrease in the frequency the scale increases and, as a result, so does the width of the wavelet
function. This is the reason why CWT values are more affected by the edge effect at lower
frequencies.

tA½tstart; tstart þ R�4tA½tend � R; tend �; ð29Þ

RGabor ¼ ks
sffiffiffi
2

p ¼ k
Z
2pf

sffiffiffi
2

p ¼ k
sminGabor

2f Dt

sffiffiffi
2

p ; ð30Þ

RGenHarm ¼ k
sminGabor

s
6f Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p2 � 15

p
equivalent frequency spread: ð31Þ

Since the general harmonic wavelet function calculated with the equivalent frequency spread has a
slightly higher time spread than the Gabor wavelet function, the corresponding area affected by
the edge effect is larger. From Fig. 3 one can see that the length of the signal should be longer than
the maximum width of the shaded area. The shaded area represents the area of the CWT that is
influenced by the edge effect. The minimum required signal length should, therefore, be at least
twice R; expression (32). If the signal length is less than 2R; the low-frequency region of the CWT
is significantly influenced by the edge effect.

LminX2R: ð32Þ

Fig. 3. The area affected by the edge effect. Parameters: sminGabor ¼ 2; s ¼ 1:0; Dt ¼ 1 s; k ¼ 3:0:
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The influence of the edge effect can be reduced if the length of the signal is increased by
mirroring the signal around the start- and end-time indexes, Fig. 4. The length of the signal is
increased by 2R: R is calculated using Eq. (30) or (31) and the minimum desired calculated
frequency. The CWT is then calculated for the lengthened signal. Now the edge effect influences
the CWT values at the start- and end-time indexes of the lengthened signal. However, these values
can be disregarded because one is only interested in the CWT values corresponding to the time
indexes of the original (shorter) signal. Consequently, only the CWT values for the time indexes of
the original signal are presented.
An artificial signal, expression (33), was generated for testing the efficiency of the proposed

procedure for reducing the edge effect. The signal is composed of two components: the cosines
part with constant frequency and amplitude; and a linear chirp of constant amplitude. Using a
sampling frequency of fs ¼ 1 Hz we sampled 8192 discrete points of the signal. The parameters
used for the CWT calculations are given in Table 3.

f ðtÞ ¼ 5 cosð2p0:1tÞ þ 5 cosðp3:052 10�5t2 þ 0:5ptÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
linear chirp

: ð33Þ

Fig. 5 shows the CWT of the signal that was generated with expression (33). In this case no
signal mirroring was used. Ripples at the times t ¼ 0 and 8191 s can be observed in the
frequency ranges ofB0:1 Hz and above 0:3 Hz: These ripples are caused by the edge effect. Fig. 6
shows the CWT of the same signal when signal mirroring was used. The length of the signal was
increased by 2R: R was calculated using k ¼ 3:0: The ripples that can be seen in Fig. 5 are no
longer present.

Table 3

CWT parameters

Wavelet function smin fend fstart Df

General harmonic 7.498 0:01 Hz 0:5 Hz 0:005 Hz

Fig. 4. Mirroring the signal.
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5. Conclusion

This paper deals with certain properties of the continuous wavelet transform and wavelet
functions. Specifically, the norms and the spreads in time and frequency of the common Gabor
and Morlet wavelet functions are presented. We showed that the norm of the Morlet wavelet

Fig. 5. CWT of generated signal. Ripples at the start- and end-time indexes are visible.

Fig. 6. CWT of generated signal using the procedure for reducing the edge effect. Ripples at the start- and end-time

indexes are not visible.
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function does not satisfy the normalization condition and that the normalized Morlet wavelet
function is identical to the Gabor wavelet function with the parameter s ¼ 1:
The general harmonic wavelet function was developed using frequency modulation of the

Hanning and Hamming window functions. Several properties of the general harmonic wavelet
function are also presented and compared to the well-known Gabor wavelet function. The time
and frequency spreads of the general harmonic wavelet function are only slightly higher than the
time and frequency spreads of the Gabor wavelet function. However, the general harmonic
wavelet function is simpler to use than the Gabor wavelet function. In addition, the general
harmonic wavelet function can be constructed in such a way that the zero average condition is
truly satisfied. The average value of the Gabor wavelet function can approach a value of zero, but
it cannot reach it.
When calculating the continuous wavelet transform, errors occur at the start- and end-time

indexes. This is called the edge effect and is caused by the fact that the wavelet transform is
calculated from a signal of finite length. In this paper, a method that uses signal mirroring is
proposed to reduce the errors caused by the edge effect. The success of the proposed method was
shown on a simulated signal.
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Appendix A

Time centre of the wavelet function:

%u ¼
1

jjcðtÞjj2

Z þN

�N

tjcðtÞj2 dt: ðA:1Þ

Time centre of the dilated and scaled wavelet function:

%uu;s ¼
1

jjcu;sðtÞjj
2

Z þN

�N

tjcu;sðtÞj
2 dt

¼ 1
Z þN

�N

t c
t � u

s

� ���� ���21
s
dt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

new variable
t�u

s
¼z

¼
Z þN

�N

ðzs þ uÞjcðzÞj2
1

s
s dz

¼ s

Z þN

�N

zjcðzÞj2 dz|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
%u

þu

Z þN

�N

jcðzÞj2 dz|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
jjcðtÞjj2¼1

¼ s %u þ u: ðA:2Þ
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Frequency centre of the wavelet function is defined by Eq. (A.3), where #cðoÞ represents the
integral Fourier transform of the wavelet function cðtÞ:

%o ¼
1

2pjjcðtÞjj2

Z þN

�N

oj #cðoÞj2 do; ðA:3Þ

%ou;s ¼
1

2pjjcu;sðtÞjj
2

Z þN

�N

oj #cu;sðoÞj2 do

¼
1

2p1

Z þN

�N

oj
ffiffi
s

p
e�iuo #cðsoÞj2do

¼
1

2p

Z þN

�N

soj #cðsoÞj2 do|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
new variable s
o¼z

¼
1

2p

Z þN

�N

s
z

s
j #cðzÞj2

dz

s

¼
1

s

1

2p

Z þN

�N

zj #cðzÞj2 dz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
%o

¼
1

s
%o: ðA:4Þ
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